
2024년 12월 한국소프트웨어감정평가학회 논문지 제20권 제4호

- 331 -

1. Introduction

In the ever-evolving digital landscape,

enterprises increasingly rely on intranets to

safeguard and manage critical business

operations. These internal networks, commonly

referred to as intranets, house sensitive data,

such as customer information, intellectual

property, and confidential business strategies.

As external threats multiply in both number

and sophistication, ensuring the security of

these internal networks has become paramount

for organizations across industries.

Historically, firewalls served as the first

layer of defense, protecting the internal

network perimeter by blocking unauthorized

access from outside. Firewalls evolved as a

fundamental component of network security,

providing baseline protection for enterprises.

However, as web technologies and Internet

논문 2024-4-33 http://dx.doi.org/10.29056/jsav.2024.12.33

A Study on Blockchain-Based API and WAAP Level
Assignment Using Lifecycle as a Value Assessment Model

Minchul Kim*†

Abstract

In this paper, we propose a novel framework for the lifecycle management and value assessment of
APIs and Web Application and API Protection (WAAP) using blockchain technology. By integrating
blockchain, the framework ensures transparency, security, and traceability, enabling a robust value
assessment model based on the interactions and updates logged throughout the lifecycle of APIs and
WAAP. The proposed system also introduces a recursive verification process, enhancing security by
continuously monitoring API and WAAP integrity. This recursive approach facilitates the verification and
recovery processes by utilizing identical mechanisms, ensuring seamless API validation and WAAP
restoration when vulnerabilities are detected. The research is motivated by the increasing reliance on APIs
in modern application ecosystems and the limitations of traditional API gateways in addressing complex
lifecycle and security challenges. Existing approaches often fail to provide the transparency and
traceability required for robust security management. Our framework addresses these gaps by employing
blockchain to maintain immutable records of API interactions, leveraging cryptographic hashing for
integrity verification, and ensuring that only validated APIs meet operational standards. This approach not
only enhances security but also establishes a foundation for systematic lifecycle management and value
assessment.

keywords : Blockchain, API Security, WAAP, Lifecycle Management, Value Assessment,
Integrity Verification

* Pentasecurity Inc
†Corresponding Author: Minchul Kim

(email: minchul@pentasecurity.com)
Submitted: 2024.10.25. Accepted: 2024.12.05.
Confirmed: 2024.12.20.

http://dx.doi.org/10.29056/jsav.2024.12.33


A Study on Blockchain-Based API and WAAP Level Assignment Using Lifecycle as a Value Assessment Model

- 332 -

usage expanded, web-based attacks targeting

vulnerabilities in applications and protocols

began to emerge. These challenges exposed the

limitations of traditional firewalls, leading to

the development of Web Application Firewalls

(WAF) [1-3].

WAFs were designed to address

vulnerabilities at the application layer by

monitoring and filtering incoming and outgoing

web traffic based on a set of predefined

security rules. WAFs played a crucial role in

mitigating attacks such as SQL injection,

cross-site scripting (XSS), and other malicious

payloads that could exploit application

vulnerabilities. For many years, WAF was

considered a reliable solution for protecting

web applications that interfaced with internal

systems, including those that operated within

an organization's intranet.

Fig. 1 illustrates how traditional WAFs were

primarily responsible for safeguarding the

internal networks (intranets) of enterprises.

The WAF acts as a barrier between external

traffic, such as users, IoT devices, and external

institutions, and the internal API servers and

databases. By filtering potentially malicious

traffic, WAFs ensured that only safe requests

reached critical components of the

organization's network infrastructure.

However, as the use of APIs expanded in

modern web architectures, WAF alone was no

longer sufficient to address the growing

number of sophisticated threats targeting both

web applications and APIs. The rise in

API-based attacks highlighted the need for a

more comprehensive security approach that

could extend beyond web traffic filtering to

include API protection as well.

This led to the evolution of Web

Applications and API Protection (WAAP) [4-6].

WAAP integrates the traditional capabilities of

WAF with additional features such as API

security, bot mitigation, and DDoS protection.

Unlike WAF, which primarily defends against

common web application vulnerabilities, WAAP

provides advanced mechanisms to address the

growing API attack surface. The OWASP API

Security Top 10 [7-10], which includes threats

like broken object-level authorization and

inadequate security configuration, has

underscored the importance of securing both

web applications and APIs.

Fig. 1. Traditional WAAP for Protecting Intranet

The API Gateway [11,12] handles requests

from clients, routing them to the appropriate

backend services while managing tasks such

as rate limiting, authentication, and load

balancing. It is essential for controlling and

monitoring API traffic, ensuring that external

users interact with APIs securely and

efficiently.

In our approach, rather than directly

modifying the existing API Gateway, we

propose managing APIs through a WAAP. The



2024년 12월 한국소프트웨어감정평가학회 논문지 제20권 제4호

- 333 -

WAAP acts as a security layer that oversees

all APIs passing through the gateway. By

utilizing WAAP, we can standardize the

management of APIs and introduce a tagging

system that categorizes APIs based on security

level, lifecycle status, and value assessment

criteria. This ensures that not only are the

APIs being routed securely, but they are also

systematically organized and protected, making

it easier to monitor, verify, and update them as

necessary.

Registering an API for external use is a

crucial process to ensure security. Fig. 2

illustrates the key distinction between our

proposed model and the traditional WAF-based

approach shown in Fig. 1. While Fig. 1 focuses

primarily on protecting the internal network

(intranet), Fig. 2 expands the security model to

protect both the internal network and external

users. By ensuring that only secure APIs are

accessible to external users and devices, such

as IoT, our model guarantees that users

interact with APIs securely.

A significant aspect of Fig. 2 is the

integration of blockchain into the API lifecycle

management. Blockchain is employed to

securely track the registration, verification, and

status of APIs, ensuring that all changes are

transparently recorded in a decentralized and

tamper-proof ledger. This adds an extra layer

of integrity, making it easier to monitor and

audit API interactions. By leveraging

blockchain, any updates or modifications to

APIs are securely logged, ensuring that only

validated and secure APIs are made available

for external use.

This approach not only safeguards the APIs

themselves but also enhances the overall

security for external users by providing

comprehensive, end-to-end protection through

WAAP. By establishing a lifecycle for APIs

and WAAP, this approach also creates a value

assessment model, aligning with the overall

theme of this paper. By providing security

throughout the API lifecycle—from registration

to verification—our model ensures that the

value and security of each API are

continuously monitored and maintained.

This paper is structured as follows: Section

2 discusses the related works, covering

existing API security solutions and previous

advancements in WAAP. Section 3 provides

background on key topics such as the OWASP

API Security Top 10. Section 4 outlines our

proposed method for registering APIs and the

hash-based verification process to ensure

integrity. In Section 5, we explain how

blockchain is used to create an API and

WAAP lifecycle, allowing us to establish a

clear value assessment framework. Section 6

concludes the paper.

Fig. 2. Proposed WAAP with Blockchain-Integration



A Study on Blockchain-Based API and WAAP Level Assignment Using Lifecycle as a Value Assessment Model

- 334 -

2. Related Works

There are several research efforts that utilize

blockchain to enhance API security.

N. Moosavi et al. [13] reviewed the

application of blockchain across various fields,

particularly in IoT, identifying its potential for

improving transparency and decentralization in

security frameworks like API management. J.

Govea et al. [14] explored how blockchain can

strengthen cyber-resilience in critical

infrastructure, focusing on its immutable and

decentralized nature to reduce security

incidents by 40%. Nihala Basheer et al. [15]

developed a deep-learning model to manage

threats in API calls by integrating

transparency obligations to ensure system

resilience. The study emphasizes improving

API security through machine learning,

particularly focusing on threat detection and

management in API communications. Durre

Zehra Syeda et al. [16] proposed a dynamic

malware classification system that also

categorizes APIs based on their usage in

Windows executable files. This method

enhances security by detecting malicious API

behavior through machine learning, particularly

addressing the categorization of API calls in

malware detection.

3. OWASP API Security Top 10 [8]

The Open Web Application Security Project

(OWASP) is a globally recognized organization

dedicated to improving the security of software

and web applications. One of its most

influential contributions is the OWASP API

Security Top 10, which identifies the most

critical security risks specific to APIs. As

modern web architectures increasingly rely on

APIs for functionality, securing these APIs has

become paramount. The OWASP API Security

Top 10 provides a comprehensive guide to help

developers and security professionals identify

and mitigate the most common API

vulnerabilities.

The latest OWASP API Security Top 10 for

2023 list includes the following threats:

Ÿ Broken Object Level Authorization

(BOLA): This vulnerability arises when

APIs do not properly enforce authorization

checks at the object level, allowing

attackers to access unauthorized data by

manipulating object identifiers.

Ÿ Broken Authentication: Weak or

improperly implemented authentication

mechanisms may allow attackers to

impersonate legitimate users or hijack user

accounts, leading to unauthorized access to

APIs and their resources.

Ÿ Broken Object Property Level

Authorization: This risk involves

insufficient checks at the object property

level, allowing attackers to view or

manipulate sensitive properties they

shouldn't have access to. For example, an

attacker could change a user's role from

'user' to 'admin' without proper checks.

Ÿ Unrestricted Resource Consumption:

APIs that do not limit resource



2024년 12월 한국소프트웨어감정평가학회 논문지 제20권 제4호

- 335 -

consumption may be overwhelmed by high

traffic or resource-intensive requests,

causing denial of service (DoS) attacks or

elevated operational costs.

Ÿ Broken Function Level Authorization:

In this vulnerability, APIs fail to correctly

verify users’ privilege levels, allowing

unauthorized users to access sensitive

functions or data that they shouldn't be

permitted to.

Ÿ Server-Side Request Forgery (SSRF):

SSRF vulnerabilities occur when APIs are

tricked into sending malicious requests to

internal services or third-party servers,

potentially leading to data leakage or

system compromise.

Ÿ Security Misconfiguration: This threat

stems from improper configuration settings,

such as leaving sensitive endpoints exposed

or not patching known vulnerabilities,

leaving APIs vulnerable to attack.

Ÿ Lack of Protection From Automated

Threats: APIs lacking adequate protection

against automated threats (e.g., bots or

credential stuffing attacks) are susceptible

to being exploited by malicious automated

scripts.

Ÿ Improper Inventory Management: This

risk arises from poor management of API

endpoints, which can result in forgotten,

outdated, or insecure APIs being exposed

and susceptible to exploitation.

Ÿ Unsafe Consumption of APIs: APIs that

consume data from untrusted or unverified

sources without proper validation pose a

risk, as attackers can inject malicious data,

compromising the API and the broader

system.

Fig. 3. Proposed API Registration and Hash-Based Integrity Verification Process



A Study on Blockchain-Based API and WAAP Level Assignment Using Lifecycle as a Value Assessment Model

- 336 -

4. Proposed API Registration and 

Integrity Verification

Fig. 3 illustrates the process of API

registration and hash-based integrity

verification within a WAAP. The diagram

depicts the interactions between the service

provider, the WAAP, and the user, emphasizing

how the API is secured and maintained

throughout its lifecycle.

The process begins with the service provider

registering the API in the WAAP. This

includes submitting the API’s details to the

Hash Verification Tool within WAAP. The

primary goal of this submission is to secure

the API before making it available to users,

ensuring that any future modifications or

tampering can be detected through verification.

Once the API registration request is submitted,

the Hash Verification Tool generates a

cryptographic hash for the API. This unique

identifier reflects the API in its current state.

Should any unauthorized changes occur, the

hash will differ, serving as a means of

detecting these modifications. After the hash is

generated, the WAAP stores the API’s ID, the

API itself, and the corresponding hash value.

This storage ensures that future versions of

the API can be validated by comparing the

newly generated hash with the stored value.

Following this, the service provider receives a

response from the WAAP, which includes the

API’s ID and the corresponding hash. This

provides a reference point for verifying the

API’s integrity in future interactions or during

potential changes. When a user interacts with

the API, they can verify its integrity by

comparing the hash of the current API version

with the stored hash in the WAAP. This

verification ensures that no unauthorized

modifications have occurred. This entire

process, as illustrated in Fig. 3, underscores

the importance of utilizing a hash-based

method to maintain the API’s integrity and

security. The use of this system helps ensure

that unauthorized changes are detected

promptly, securing the API from registration to

end-user interaction.

Algorithm 1 demonstrates the detailed

process of API registration and hash-based

integrity verification in a WAAP, following the

conceptual steps outlined in Fig. 3. The

algorithm consists of three main functions,

which collectively handle the API’s registration,

hashing, storage, and integrity verification.

Algorithm 1: API Registration and Integrity Verification

1 function registerAPI(api):
2 api_hash = generateHash(api)
3 storeInDatabase(api.id, api, api_hash)
4 return api.id, api_hash
5
6 function verifyAPI(api):
7 stored_hash = getStoredHash(api.id)
8 current_hash = generateHash(api)
9
10 if current_hash == stored_hash:
11 return "API integrity verified"
12 else:
13 return "API integrity compromised"
14
15 function generateHash(api):
16 return cryptographicHash(api)

Table 1 outlines the different API security

levels and their corresponding criteria. At Level



2024년 12월 한국소프트웨어감정평가학회 논문지 제20권 제4호

- 337 -

1, the API is fully approved by WAAP Level 1

and is considered secure and trusted, with no

vulnerabilities detected. Level 2 APIs are

partially secure and still pending verification,

with minor vulnerabilities identified that are

yet to be addressed. Finally, Level 3 includes

APIs that are unverified or risky, and therefore

not approved for general use due to multiple

vulnerabilities being detected.

Table 2 presents the security levels of the

WAAP itself. Level 1 WAAPs are fully

operational and certified to manage secure

APIs, with no vulnerabilities reported. Level 2

systems are under review due to security

concerns, with minor vulnerabilities that are

being addressed, leading to a slightly reduced

confidence in their ability to manage API

security. Level 3 WAAPs have severe

vulnerabilities detected and require urgent

action to restore their integrity, making them

unsuitable for handling APIs at this level.

Level Description

1 Fully operational, certified to manage secure APIs, no
reported vulnerabilities

2 Under review for security concerns, minor vulnerabilities
being addressed, reduced confidence in API security

3
Severe vulnerabilities detected, require urgent action to
restore integrity, not recommended for handling APIs at
this level

Table 2. WAAP Levels and Security Measures

5. Blockchain-based API and WAAP 

Lifecycle for Value Assessment

This chapter focuses on the lifecycle

management of APIs and WAAP using

blockchain technology, emphasizing its role in

securing the system and maintaining

transparency through immutable records. By

integrating blockchain, the framework not only

ensures that each interaction or change is

tracked and logged for accountability but also

enables a recursive verification process. This

process unifies API validation and WAAP

restoration mechanisms, facilitating seamless

lifecycle management while enhancing the

system's overall integrity. Furthermore, the

proposed approach supports a value assessment

model by systematically evaluating the security

and functionality of APIs and WAAPs at each

stage of their lifecycle.

Fig. 4 to 7 illustrate various scenarios in

which the lifecycle of APIs and WAAPs are

managed, highlighting how blockchain is

utilized to ensure the security, integrity, and

value of each component within the system.

Fig. 4 illustrates the initial registration of an

API and its management through a WAAP

(Level 1). The process begins with the user

submitting an API, which is registered and

verified through the WAAP. During this

process, the blockchain ensures that the

registration is tamper-proof, with the API’s ID

and integrity securely stored on the blockchain.

If the API has a developer tag (sample code), it

is filtered out and not allowed to be used at

WAAP Level 1. Only APIs that pass this

Level Description

1 Secure and trusted API, fully approved by WAAP Level 1,
no vulnerabilities detected

2
Partially secure, pending verification checks, minor
vulnerabilities detected

3 Unverified or risky API, not approved for general use,
multiple vulnerabilities detected

Table 1. API Security Levels and Criteria



A Study on Blockchain-Based API and WAAP Level Assignment Using Lifecycle as a Value Assessment Model

- 338 -

verification are approved for usage. This step is

critical in establishing the foundation of the

API’s lifecycle, ensuring that it can be securely

monitored and assessed throughout its usage.

Fig. 5 demonstrates the vulnerability

management process. When a vulnerability is

discovered within an API, the blockchain is

updated to reflect this issue. The WAAP

acknowledges the vulnerability and begins the

process of patching or mitigating the issue. If

the WAAP fails to detect the vulnerability, its

level is downgraded. Blockchain securely logs

this change, allowing transparent tracking of

vulnerabilities and responses. This ensures that

any vulnerability in the API lifecycle is

properly documented and addressed.

Fig. 6 depicts the revalidation of APIs

handled by downgraded WAAPs. When the

WAAP's level is reduced, the APIs that were

processed by that WAAP must undergo

revalidation.

In this process, the API is validated by

querying another WAAP at Level 1. If the

other WAAP validates the API successfully, it

is considered secure. If not, the API's status is

flagged as insecure, and its usage is restricted.

Fig. 7 showcases how a downgraded WAAP

can recover. If vulnerabilities in the WAAP are

patched or mitigated, the system automatically

updates the WAAP back to Level 1. Blockchain

securely tracks this recovery, providing a clear

audit trail that shows when and how the

WAAP was restored to its original level. This

ensures that the WAAP can return to full

functionality, securing APIs at Level 1 again.

By utilizing blockchain to track the lifecycle

of APIs and WAAPs, we create a value

assessment model. Each interaction, update, or

modification is securely logged, providing a

transparent and verifiable record of the

system's integrity and security. This allows for

continuous monitoring and assessment of the

API and WAAPs, ensuring that their value is

preserved throughout their lifecycle.

Fig. 4. Initial API and WAAP Registration Process



2024년 12월 한국소프트웨어감정평가학회 논문지 제20권 제4호

- 339 -

Fig. 5. Vulnerability Management in WAAPs

Fig. 6. Lifecycle Update for WAAP

Fig. 7. Administrator-Controlled WAAP Updates



A Study on Blockchain-Based API and WAAP Level Assignment Using Lifecycle as a Value Assessment Model

- 340 -

Algorithm 2: Recursive API and WAAP Lifecycle Algorithm

1 function manageAPILifecycle (api, waap_status, api_status,
vulnerability_status):

2 if api_status == "Not Registered":
return registerAPIProcess(api)

3 else if api_status == "Registered" and checkAPILevel(api.id)
== 1 and waap_status == 1:

4
if checkForTag(api):
return "This API is a sample code (Tag found),

cannot be used."

5 return "API is registered and safe to use with WAAP
Level 1."

6
else if api_status == "Registered" and (checkAPILevel(api.id)

< 1 or waap_status < 1):
return "API or WAAP level is too low, cannot be used."

7 return manageAPILifecycle(api, checkWAAPStatus(api.id),
checkAPIStatus(api.id), checkVulnerabilityStatus(api.id))

8
9 function checkForTag(api):

10 if "Tag" in api.metadata:
return True

11 return False
12
13 function registerAPIProcess(api):

14

if queryBlockchainForWAAPLevel(1) == "Approved":
api_hash = generateHash(api)
storeOnBlockchain(api.id, api_hash, "WAAP 1")
return "API registered successfully."

15 else:
return "API registration failed. WAAP Level 1 required."

Algorithm 2 outlines the process for

managing API registration and WAAP

verification recursively, as explained in Fig. 4

to 7. It begins by checking if an API is

already registered. If it is not registered, the

algorithm proceeds with the registration

process, while also ensuring that APIs

containing developer tags, such as sample code,

are not approved at WAAP Level 1. Once

registered, the algorithm checks the integrity of

both the API and WAAP, ensuring they meet

the required security levels, specifically Level

1. If the API or WAAP levels fall below the

required threshold, the system revalidates the

APIs handled by downgraded WAAPs.

Additionally, the algorithm allows for

continuous revalidation of APIs and automatic

WAAP recovery, leveraging blockchain

technology to securely track changes and

provide decentralized auditing. This ensures

that the lifecycle of both APIs and WAAPs is

maintained securely, with every interaction

being logged and monitored.

This recursive approach ensures that both

APIs and WAAPs maintain their integrity and

security throughout their lifecycle,

automatically handling vulnerabilities and

recovery processes.

6. Conclusion and future works

The system we developed offers a robust

framework for assessing the value of APIs and

WAAPs through the application of blockchain

technology. This approach ensures

transparency, security, and traceability, making

it possible to create a trustworthy value

assessment model based on each interaction

and update logged on the blockchain. Our

recursive verification process adds an additional

layer of security, maintaining the integrity of

APIs and WAAPs across their lifecycle, which

is increasingly critical as APIs become central

to modern application ecosystems.

However, it is important to recognize that

while this model lays a strong theoretical

foundation, practical testing has not yet been

conducted. As APIs play an increasingly

pivotal role in various industries, their security



2024년 12월 한국소프트웨어감정평가학회 논문지 제20권 제4호

- 341 -

must be evaluated from multiple perspectives.

Future work should focus on testing this

framework in real-world scenarios to

understand its operational limitations and to

identify any potential challenges that may arise

during implementation. This testing will allow

us to refine the model and ensure that it can

handle the complexities of actual environments.

Additionally, the framework’s recursive

verification and recovery mechanisms offer a

unique advantage for managing vulnerabilities

efficiently. By utilizing blockchain’s immutable

record-keeping and decentralized structure,

these mechanisms not only streamline the

validation process but also provide robust

auditing capabilities for all API interactions.

This ensures that even during recovery

operations, the system adheres to stringent

security protocols, maintaining trustworthiness

across all stages.

Given that we have already outlined the

experimental process for the system’s lifecycle

management, the next logical step involves

testing the value assessment model itself.

Understanding how the model functions in

real-world operations is key to determining

whether it accurately reflects the true value of

the APIs and WAAPs it monitors. Moreover,

future studies should explore scalability and

integration challenges when applying the

framework to large-scale enterprise networks

or high-traffic API ecosystems. These

investigations will help confirm the

framework’s applicability and identify

enhancements to strengthen its deployment in

diverse operational contexts.

This work is supported by the Korea

Agency for Infrastructure Technology

Advancement (KAIA) grant funded by the

Ministry of Land, Infrastructure and

Transport (Grant RS-2022-00144012)

References

[1] B. R. Dawadi, B. Adhikari, and D. K.
Srivastava, "Deep Learning
Technique-Enabled Web Application
Firewall for the Detection of Web
Attacks," Sensors, vol. 23, no. 4, 2023.
DOI: https://doi.org/10.3390/s23042073.

[2] J. Chen, "WAFMAN: Web Application
Firewall Management for Next Generation
Applications," in Proceedings of the IEEE
Symposium on Security and Privacy (SP),
2024, pp. 129-140. DOI:
https://doi.org/10.1109/SP.2024.00024.

[3] M. Sepczuk, "Dynamic Web Application
Firewall Detection Supported by Cyber
Mimic Defense Approach," Journal of
Network and Computer Applications, vol.
212, 2023. DOI:
https://doi.org/10.1016/j.jnca.2023.103596.

[4] Penta Security, "Evolving Web Security:
WAAP, Web Application and API
Protection," Penta Security Blog. 2024.
Available: https://www.pentasecurity.com/
blog/evolving-web-security-waap/ .
[Accessed: Oct. 2024].

[5] Andrew Hoffman, Web Application
Security, O'Reilly Media, Inc., 2024. ISBN:
9781098143930.

[6] E. M. Mohamed, M. F. Mohamed, and E.
M. Saad, "A Blockchain-based Security
Framework for Preventing DDoS and
Enhancing Privacy in Cloud Environment,"
Future Internet, vol. 15, no. 10, 2023. DOI:
https://doi.org/10.3390/fi15100326.



A Study on Blockchain-Based API and WAAP Level Assignment Using Lifecycle as a Value Assessment Model

- 342 -

[7] S. Martin and L. Ruiz, "Designing Secure
APIs for Cloud-based Applications," in
Lecture Notes in Computer Science, vol.
13710, Springer, 2023, pp. 452-463. DOI:
https://doi.org/10.1007/978-3-031-35314-7_33

[8] OWASP Foundation, OWASP API
Security Top 10 - 2023, OWASP API
Security Project, 2023. Available:
https://owasp.org/www-project-api-securit
y/. [Accessed: Oct. 2024].

[9] R. Botwright, OWASP Top 10
Vulnerabilities: Beginner's Guide to Web
Application Security Risks, Pastor
Publishing Ltd, 2024. ISBN: 9781839386299.

[10] L. Kree, R. Helmke, and E. Winter,
"Using Semgrep OSS to Find OWASP
Top 10 Weaknesses in PHP Applications:
A Case Study," in Detection of Intrusions
and Malware, and Vulnerability
Assessment, F. Maggi, M. Egele, M.
Payer, and M. Carminati, Eds., DIMVA
2024, Lecture Notes in Computer Science,
vol. 14828, Springer, Cham, 2024. DOI:
https://doi.org/10.1007/978-3-031-64171-8_4

[11] J. Alvarado-Valiente, J. Romero-Álvarez,
E. Moguel, et al., "Technological diversity
of quantum computing providers: a
comparative study and a proposal for API
Gateway integration," Software Quality
Journal, vol. 32, pp. 53–73, 2024. DOI:
https://doi.org/10.1007/s11219-023-09633-5.

[12] X. Cao, H. Zhang, and H. Shi, "Load
Balancing Algorithm of API Gateway
Based on Microservice Architecture for a
Smart City," Journal of Testing and
Evaluation, vol. 52, no. 3, pp. 1663-1676,
May 2024.
DOI: https://doi.org/10.1520/JTE20220718.

[13] N. Moosavi and H. Taherdoost,
"Blockchain Technology Application in
Security: A Systematic Review,"
Blockchains, vol. 1, no. 2, pp. 58-72, Oct.
2023. DOI:
https://doi.org/10.3390/blockchains1020005.

[14] J. Govea, W. Gaibor-Naranjo, and W.

Villegas-Ch, "Securing Critical
Infrastructure with Blockchain Technology:
An Approach to Cyber-Resilience,"
Computers, vol. 13, no. 5, article 122, May
2024. DOI:
https://doi.org/10.3390/computers13050122.

[15] N. Basheer, S. Islam, M. K. S. Alwaheidi,
and S. Papastergiou, "Adoption of
Deep-Learning Models for Managing
Threat in API Calls with Transparency
Obligation Practice for Overall Resilience,"
Sensors, vol. 24, no. 15, article 4859, July
2024.
DOI: https://doi.org/10.3390/s24154859.

[16] D. Z. Syeda and M. N. Asghar, "Dynamic
Malware Classification and API
Categorisation of Windows Portable
Executable Files Using Machine Learning,"
Applied Sciences, vol. 14, no. 3, article
1015, Jan. 2024. DOI:
https://doi.org/10.3390/app14031015.

Authors

Minchul Kim

2022.2 Ph.D. in Information Security from
Korea University, Seoul, South
Korea

2022.9-2023.4 Research Professor in the
Department of Computer
Science and Engineering at
Korea University

2023.4-present Senior Manager at
Pentasecurity, Inc.

<Research interests> Blockchain, Data
Security, Network Security, Hardware
Security, Communication Security, etc


